

This article was downloaded by:

On: 30 January 2011

Access details: Access Details: Free Access

Publisher *Taylor & Francis*

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Spectroscopy Letters

Publication details, including instructions for authors and subscription information:

<http://www.informaworld.com/smpp/title~content=t713597299>

Complexes of A-H Acids with Triethylamine: Specificities of Spectroscopic Characteristics

S. E. Odinokov^a; A. A. Mashkovsky^a; A. K. Dzizenko^a; V. P. Glazunov^a

^a Pacific Institute of Bio-organic Chemistry, Vladivostok, USSR

To cite this Article Odinokov, S. E. , Mashkovsky, A. A. , Dzizenko, A. K. and Glazunov, V. P.(1975) 'Complexes of A-H Acids with Triethylamine: Specificities of Spectroscopic Characteristics', *Spectroscopy Letters*, 8: 2, 157 — 164

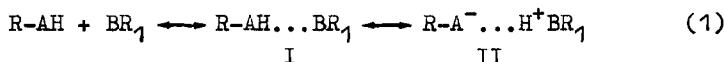
To link to this Article: DOI: 10.1080/00387017508067317

URL: <http://dx.doi.org/10.1080/00387017508067317>

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: <http://www.informaworld.com/terms-and-conditions-of-access.pdf>

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.


The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

COMPLEXES OF A-H ACIDS WITH TRIETHYLAMINE: SPECIFICITIES OF SPECTROSCOPIC CHARACTERISTICS

S.E.Odinokov, A.A.Mashkovsky, A.K.Dzizenko and V.P.Glazunov
Pacific Institute of Bio-organic Chemistry, Far East Science
Center, Academy of Sciences of the USSR, Vladivostok-22,USSR

KEY WORDS: H-bond, PMR- and IR-spectra, enthalpy.

According to the donor-acceptor model of hydrogen bonding, the intermolecular bonds $R-AH \dots BR_1$ and $R-A^- \dots H^+BR_1$ are, in the main, of the same nature¹. In this case, the charge transfer at acid-base interaction

causes the existence of H-complexes I and II and the majority of their properties. For one thing, this determines the significant changes in the intensity (A) stretching vibration $\nu(AH)$ in the IR-spectra and in the proton chemical shift (δ_H) in the PMR spectra. In view of this, the study of changes in the magnitudes of A and δ_H , when the acid-base properties of the molecules interacting in the reaction (1) vary widely, presents significant interest. This allows not only to elucidate more fully the reasons causing changes in the values A

and δ_H , but to establish their bonds with the structure of forming H-complexes and the enthalpy of their formation ($-\Delta H$), which for (1) changes from ~ 1 to 40 kcal/mole².

Recently, we reported^{3,4} that the linear dependency

$$-\Delta H = 1.11 \Delta \delta + 0.49 \quad (2)$$

is observed between the magnitude $\Delta \delta = \delta_H - \delta_o - \delta_b$, where δ_o and δ_b are the monomer chemical shift and contribution due to the magnetic anisotropy of the molecule of base BR_1 , respectively, and the enthalpy of the H-complex $R-AH...BR_1$.

In this case, the said dependency exists for different H-complexes up to the symmetric structure $R-A...H...BR_1$. In continuing to examine the characteristics δ_H and A in strong H-complexes, we this time report on changes in these values for Et_3N H-complexes with acids of different strength, which allow the formation of structures I and II in a wide range of $-\Delta H$ changes, from ~ 2 to 30 kcal/mole. Rather characteristic specificities in the behavior of δ_H , A and ΔH were observed. Thus, in the H-complexes II, their behavior is diametrically opposite to that in H-complexes I. The use of only Et_3N as a base in (1) provides for the same δ_b contribution in the δ_H value observed.

PMR spectra were recorded on ZKR-60 and Bruker HX-90E instruments. Chemical shifts were counted from TMS in the δ scale. In order to avoid the influence of H_2O on δ_H , all acids and Et_3N were thoroughly dried, and all subsequent operation were performed in a dry box. IR-spectra were recorded on UR-20

(Karl Zeiss, Jena) instrument with a logarithmic self-recorder. The IR-band frequencies were measured as the center of gravity (ν_0) by numerical integration, and their intensities as the summary intensity of all components observed in the complex structure $\nu(AH)$, the appearance of the said components in the range $3000-1000 \text{ cm}^{-1}$ for complexes I and II with $-\Delta H > 6 \text{ kcal/mole}$ having been caused by the Fermi resonance^{4,5}. The measurement results for the magnitudes δ_H^f , A and ν_0 of the H-complexes studied are shown in Table 1.

Earlier it was shown^{4,5} that acids №1-8 (see Table 1) with Et_3N form H-complexes (1:1) with structure I. As is apparent from Table 1, the values δ_H^f and A in those complexes grow regularly, while the value ν_0 decreases with increased values of $-\Delta H$. Further increase in acid strength (№9-14) leads to formation of H-complexes II (1:1)⁵, this, in turn, causing an opposite tendency in the changes of the above values. Fig. 1 and 2 show the general trend of $-\Delta H$ -dependent changes in the said parameters for the complete reaction (1). Fig. 1 shows that the straight line drawn through the points corresponding to H-complexes I does not correspond to the dotted line drawn in accord with (2). The discrepancy is ostensibly due to the unaccounted anisotropy of the Et_3N molecule, and, as is apparent from the figure, $\delta_b^f = +1.3 \text{ ppm}$. As is apparent from the figures, the maximum values for $\Delta\delta_{\max}^f$, $\Delta A_{\max}^{1/2}$ (points of intersections of lines) shall correspond to H-complexes with structures close to the symmetrical ($\text{R}-\text{A} \dots \text{H} \dots \text{BR}_1$), and would equal $\sim 14 \text{ ppm}$ and $\sim 5.5 \cdot 10^2 \text{ l}^{1/2} \text{ mole}^{-1/2} \text{ cm}^{-1}$, respectively. In this case (for the symmet-

Table 1. Characteristics for H-complexes I and II
of various A-H acids with Et_3N .

N ^o	Acids	$A \cdot 10^{-4}$ l.mole ⁻¹ cm ⁻²	ν_o cm ⁻¹	δ_H ppm	$-\Delta H^*)$ kcal/mole
1.	CHCl_3	-	-	8.58 ¹⁰	4.0 ¹⁰
2.	t-BuOH	7.0	3290	3.00	5.2 ¹¹
3.	$\text{C}_4\text{H}_4\text{NH}$	9.2	3100	10.64	5.9 ¹⁰
4.	p-FPhOH	15.5	2855	9.73 ¹²	8.9 ²
5.	PhOH in CCl_4	17.5	2600	10.45	9.1 ²
6.	p-NO ₂ PhOH in CH_2Cl_2	21.0	2280	12.24	9.7 ¹³
7.	CH_3COOH	25.0	1800	12.90	10.4
8.	$\text{C}_6\text{H}_5\text{COOH}$ in CH_2Cl_2	36.0	1480	15.25	13.0 ¹³
9.	CH_2ICOOH in CH_2Cl_2	24.5	1770	14.90	16.9 ¹³ (20.2)
10.	CH_2ClCOOH in CH_2Cl_2	23.0	1830	14.50	18.2 ¹³ (20.6)
11.	CHCl_2COOH in CH_3CN	16.0	2235	12.10	21.7 ¹³ (23.3)
12.	CCl_3COOH in CH_3CN	14.0	2390	10.80	25.6 ¹³ (24.7)
13.	CF_3COOH in CH_3CN	12.0	2400	10.45	26.0 ¹³ (25.1)
14.	HClO_4 in CDCl_3	6.0	2975	7.40	- (27.0)

*) $-\Delta H$ in parenthesis calculated as $2 \cdot (-\Delta H_{\text{sym}}) - (1.11 \Delta \delta + 0.49)$.

rical H-complexes), the value of $-\Delta H_{\text{sym}}$ for one H-bond would be ~ 16 kcal/mole. Similar values ($\delta_{\text{max.}} \sim 13-14$ ppm) for symmetrical H-complexes ($\text{Hal} \dots \text{H} \dots \text{Hal}$) $^-\text{Bu}_4^n\text{N}^+$ in CH_2Cl_2 were obtained earlier⁶. For the symmetrical H-complex ($\text{CF}_3\text{COO} \dots \text{H} \dots \text{OOCFC}_3$) $^-\text{Bu}_4^n\text{N}^+$, δ_H was observed at 18.3 ppm⁷, which also

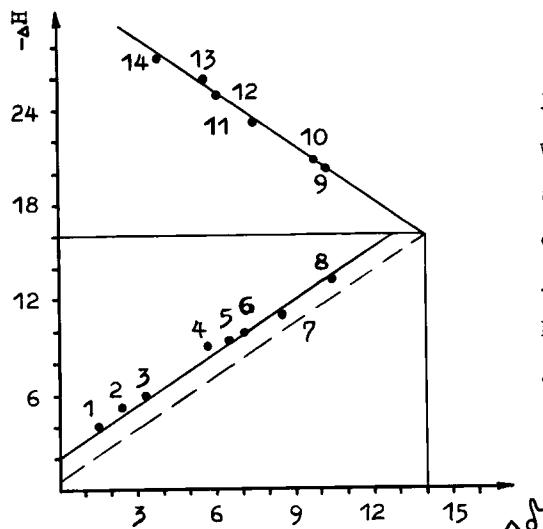


Fig.1. Relationship between changes in chemical shifts and H-bonding energies of H-complexes A-H acids with Et_3N . Numbering of H-complexes according to Table 1.

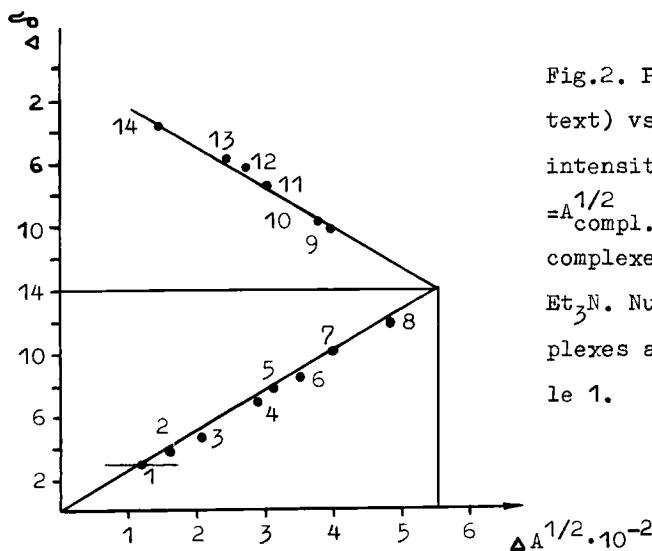


Fig.2. Plot of $\Delta\delta$ (see text) vs. increasing of intensity $\mathcal{J}(\text{AH})$ ($\Delta A^{1/2} = A_{\text{compl.}}^{1/2} - A_{\text{free}}^{1/2}$) for H-complexes acids with Et_3N . Numbering of H-complexes according to Table 1.

gives $\Delta\delta_{\max.}^1 \sim 14$ ppm. We also studied carboxylic acids with $(\text{CH}_3)_3\text{NO}$ in CH_2Cl_2 solutions which, at excess $(\text{CH}_3)_3\text{NO}$, form symmetrical H-bonds $(\text{NO} \dots \text{H} \dots \text{ON})^+\text{RCO}_2^-$ ⁵. According to the data in Table 2, the value of $\Delta A^{1/2}$ is close to those of $\Delta A_{\max.}^{1/2}$. Unfortunately, the δ_H^1 values obtained (Table 2) do not allow to calculate the values of $\Delta\delta^1$, since δ_0^1 for $(\text{CH}_3)_3\text{NO}^+\text{H}$ is unknown. However, judging from the constancy of δ_H^1 in the H-complexes of all carboxylic acids, the value of δ_0^1 , compared with $\Delta\delta_{\max.}^1$, shall probably not exceed ~ 3 ppm. It is noteworthy that, in comparing $\Delta\delta^1$ and $-\Delta H$, one should be very careful in his approach to H-complexes which allow the formation of symmetrical structures of the type $(\text{AHA})^-$ and $(\text{BHB})^+$. In this case, $\Delta\delta^1$ would not be subject to significant changes (see Table 2), whereas the heat of admixture would be redistributed between the H-bond and the ionic bond in the forming ions. Indeed, for fluorosulphonic acid that protonizes oxygen bases, slight changes for δ_H^1 (~ 12 - 15 ppm) were observed, while $-\Delta H$ changes within the range of 14 - -30 kcal/mole⁸.

According to Alexandrov and Sokolov⁹, the following effects chiefly influence the proton screening magnitude at H-bond formation: 1) change in the polarity degree of bond A-H (δ_1^1); 2) stretching of bond A-H (δ_2^1); 3) formation of donor-acceptor bond H...B, leading to a shift in the center of gravity of the cloud of the unpaired B-atom electrons toward the H atom (δ_3^1). Moreover, the contribution in δ_H^1 of 1) and 2) is negative, and that of 3) is positive. The cha-

Table 2. Characteristics of symmetrical hydrogen bond ($\text{Me}_3\text{NO}\dots\text{H}\dots\text{ONMe}_3$)⁺.

N ^o	Anion	$A \cdot 10^{-4}$	δ_o	δ_H
1.	$\text{CH}_3\text{CH}_2\text{COO}^-$	32.0	1150 ± 50	15.08
2.	$\text{CH}_2\text{ClCOO}^-$	33.0		15.76
3.	$\text{CHCl}_2\text{COO}^-$	33.0		15.35
4.	CF_3COO^-	32.0		15.59

acter of dependency of $\Delta\delta$ on $-\Delta H$ for the H-complexes studied allows to evaluate the inputs in δ_H at different stages of proton movement from A to B in (1). As we can see from Fig.1 at proton movement to $A\dots\text{H}\dots B$ $|\delta_1 + \delta_2| > |\delta_3|$; at further proton movement to $A^- \dots \text{H}^+ B$ $|\delta_3| > |\delta_1 + \delta_2|$. For the structure $A\dots\text{H}\dots B$, $|\delta_1 + \delta_2| - |\delta_3|$ attains the maximum value of ~ 14 ppm. The above results show that a theoretical study of the screening character of the H-atom nucleus in strong H-complexes should essentially account the inputs in δ_H of all three of the above-mentioned effects.

ACKNOWLEDGMENT. The translation of the paper from the Russian by Joseph C. Shapiro is hereby acknowledged.

REFERENCES

1. N.D.Sokolov. Uspekhi Fizich.Nauk, 57, 205 (1955).
2. E.M.Arnett, E.J.Mitchell, T.S.S.R.Murty. J.Amer.Chem.Soc., 96, 3875 (1974).
3. S.E.Odinokov, A.A.Mashkovsky, A.K.Dzizenko. Doklady Akad. Nauk SSSR, in press.

4. A.A.Mashkovsky. Avtoreferat kandidatskoi dissert., Vladivostok, 1974.
5. V.P.Glazunov, A.A.Mashkovsky, S.E.Odinokov. Zh.Prikl. Spektr., in press.
6. F.Y.Fujiwara, J.S.Martin. J.Chem.Phys., 56, 4091 (1972).
7. J.H.Clark, J.Emsley. J.Chem.Soc.Dalton Tr., 1125 (1974).
8. E.M.Arnett, R.P.Quirk, J.M.Larsen. J.Amer.Chem.Soc., 92, 3977 (1970).
9. A.V.Alexandrov, N.D.Sokolov. Doklady Akad.Nauk SSSR, 124, 115 (1959).
10. F.L.Slejko, R.S.Drago. J.Amer.Chem.Soc., 95, 6935 (1973).
11. R.S.Drago, N.O'Bryan, G.C.Vogel. J.Amer.Chem.Soc., 92, 3924 (1970).
12. S.V.Vinogradova, V.A.Vasnev, V.V.Korshak, P.V.Petrovsky, T.I.Mitaishvili. Izvestiya Akad.Nauk SSSR (Ser. Khim.), 11, 2479 (1970).
13. I.P.Goldshtein, T.I.Perepelkova, E.N.Guryanova, K.A.Kocheshkov. Doklady Akad.Nauk SSSR, 207, 636 (1972).

Received February 7, 1975

Accepted February 25, 1975